Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
Cancer Lett ; 587: 216703, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341127

RESUMEN

Gallbladder cancer (GBC) is a highly malignant and rapidly progressing tumor of the human biliary system, and there is an urgent need to develop new therapeutic targets and modalities. Non-POU domain-containing octamer-binding protein (NONO) is an RNA-binding protein involved in the regulation of transcription, mRNA splicing, and DNA repair. NONO expression is elevated in multiple tumors and can act as an oncogene to promote tumor progression. Here, we found that NONO was highly expressed in GBC and promoted tumor cells growth. The dysregulation of RNA splicing is a molecular feature of almost all tumor types. Accordingly, mRNA-seq and RIP-seq analysis showed that NONO promoted exon6 skipping in DLG1, forming two isomers (DLG1-FL and DLG1-S). Furthermore, lower Percent-Spliced-In (PSI) values of DLG1 were detected in tumor tissue relative to the paraneoplastic tissue, and were associated with poor patient prognosis. Moreover, DLG1-S and DLG1-FL act as tumor promoters and tumor suppressors, respectively, by regulating the YAP1/JUN pathway. N6-methyladenosine (m6A) is the most common and abundant RNA modification involved in alternative splicing processes. We identified an m6A reader, IGF2BP3, which synergizes with NONO to promote exon6 skipping in DLG1 in an m6A-dependent manner. Furthermore, IP/MS results showed that RBM14 was bound to NONO and interfered with NONO-mediated exon6 skipping of DLG1. In addition, IGF2BP3 disrupted the binding of RBM14 to NONO. Overall, our data elucidate the molecular mechanism by which NONO promotes DLG1 exon skipping, providing a basis for new therapeutic targets in GBC treatment.


Asunto(s)
Proteínas de Unión al ADN , Neoplasias de la Vesícula Biliar , Humanos , Proteínas de Unión al ADN/genética , Neoplasias de la Vesícula Biliar/genética , Factores de Transcripción/genética , Empalme del ARN , Proliferación Celular , ARN Mensajero/genética , Línea Celular Tumoral , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Homólogo 1 de la Proteína Discs Large/genética , Homólogo 1 de la Proteína Discs Large/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
2.
Mol Biotechnol ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334905

RESUMEN

Colorectal cancer (CRC) is the third most common malignant disease worldwide, and its incidence is increasing, but the molecular mechanisms of this disease are highly heterogeneous and still far from being fully understood. Increasing evidence suggests that fibrosis mediated by abnormal activation of fibroblasts based in the microenvironment is associated with a poor prognosis. However, the function and pathogenic mechanisms of fibroblasts in CRC remain unclear. Here, combining scrna-seq and clinical specimen data, DAZ Interacting Protein 1 (DZIP1) was found to be expressed on fibroblasts and cancer cells and positively correlated with stromal deposition. Importantly, pseudotime-series analysis showed that DZIP1 levels were up-regulated in malignant transformation of fibroblasts and experimentally confirmed that DZIP1 modulates activation of fibroblasts and promotes epithelial-mesenchymal transition (EMT) in tumor cells. Further studies showed that DZIP1 expressed by tumor cells also has a driving effect on EMT and contributes to the recruitment of more fibroblasts. A similar phenomenon was observed in xenografted nude mice. And it was confirmed in xenograft mice that downregulation of DZIP1 expression significantly delayed tumor formation and reduced tumor size in CRC cells. Taken together, our findings suggested that DZIP1 was a regulator of the CRC mesenchymal phenotype. The revelation of targeting DZIP1 provides a new avenue for CRC therapy.

3.
Food Sci Biotechnol ; 33(1): 73-83, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38186615

RESUMEN

Highbush blueberries (HB) and rabbiteye blueberries (RB) were separated into peels, flesh, and seeds to assess the compositions of nutriment, anthocyanins, soluble sugars and fatty acids, and the in vitro digesting abilities. Total phenolics contents (TPC) of 51-56 mg GAE/g DW were found in blueberry peels. Compared with HB peels, RB peels showed much higher TPC, but only contained 35 phenolics and lacked peonidin-3-O-rutinoside. Glucose, fructose, and sucrose were all present in HB and RB, but RB flesh had a higher acid-sugar ratio. Unsaturated fatty acid concentrations in HB and RB seeds were comparable (26.65 and 26.43 mg/g, respectively). However, HB seeds have 35 fatty acids, but RB seeds lacked cis-4,7,10,13,16,19-docosahexaenoic acid and cis-10-pentadecenoic acid. The in vitro digestion test showed that the whole fruit/peels/flesh of RB had a higher recovery and bioavailability index of phenolics and anthocyanins. Therefore, the reuse of blueberry pomace needs to be emphasized. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01326-w.

4.
Phys Rev Lett ; 131(23): 236002, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38134785

RESUMEN

Recently, the bilayer perovskite nickelate La_{3}Ni_{2}O_{7} has been reported to show evidence of high-temperature superconductivity (SC) under a moderate pressure of about 14 GPa. To investigate the superconducting mechanism, pairing symmetry, and the role of apical-oxygen deficiencies in this material, we perform a random-phase approximation based study on a bilayer model consisting of the d_{x^{2}-y^{2}} and d_{3z^{2}-r^{2}} orbitals of Ni atoms in both the pristine crystal and the crystal with apical-oxygen deficiencies. Our analysis reveals an s^{±}-wave pairing symmetry driven by spin fluctuations. The crucial role of pressure lies in that it induces the emergence of the γ pocket, which is involved in the strongest Fermi-surface nesting. We further found the emergence of local moments in the vicinity of apical-oxygen deficiencies, which significantly suppresses the T_{c}. Therefore, it is possible to significantly enhance the T_{c} by eliminating oxygen deficiencies during the synthesis of the samples.

5.
Am J Chin Med ; 51(7): 1845-1864, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37667863

RESUMEN

Sleep deprivation (SD) has become a universal social problem. There is a causal relationship between SD and energy metabolism disorder. Phytochemicals have been demonstrated to have excellent sleep-promoting effects, and studies have shown that ginsenoside Rg5 (Rg5) exerts sedative and hypnotic effects. The present study aimed to investigate the role of Rg5 in regulating energy metabolism and explore the potential mechanism of improving sleep. Sleep-deprived rats were randomly divided into a control group (Ctrl), SD model group (SD), Rg5 group (GRg5), and melatonin group (MT). Sleep-deprived model rats were generated by housing rats in an SD box for 4 weeks. The Ctrl and SD groups were given equal volumes of saline. The Rg5 groups were given 25[Formula: see text]mg/kg Rg5 or 50[Formula: see text]mg/kg Rg5, and the MT group was given 0.27[Formula: see text]g/kg MT. A Western blot analysis and ELISA were used to detect the metabolic levels, mitochondrial functional proteins, AMPK pathway proteins, clock-related proteins, adenosine receptors, and neurotransmitter receptors. The results showed that Rg5 corrected abnormal glucose and lipid metabolism as well as improved ATP levels. In addition, Rg5 alleviated mitochondrial structural damage and improved the expression of proteins involved in mitochondrial biosynthesis, fission, and fusion. Moreover, Rg5 improved the expression of AMPK/PGC-1/Nrf-1 pathway proteins, regulated mitochondrial biological functions, and affected the rhythm characteristics of circadian clock-related proteins. Further, Rg5 improved the expression of A1R and A[Formula: see text]R as well as regulated the expression levels of GABAA1[Formula: see text] and mGluR5 to improve sleep in SD rats.

6.
J Colloid Interface Sci ; 652(Pt A): 989-996, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37639929

RESUMEN

The design and development of high-performance, low-cost catalysts with long-term durability are crucial for hydrogen generation from water electrolysis. Interfacial engineering is an appealing strategy to boost the catalytic performance of electrode materials toward hydrogen evolution reaction (HER). Herein, we report a simple phosphidation followed by sulfidation treatment to construct heterogeneous cobalt phosphide-cobalt sulfide nanowire arrays on carbon cloth (CoP/CoS2/CC). When evaluated as catalysts toward the HER, the resultant CoP/CoS2/CC exhibits efficient pH-universal hydrogen production due to the heterostructure, synergistic contribution of CoP and CoS2, and conductive substrate. To attain a current density of 10 mA cm-2, overpotentials of only 111.2, 58.1, and 182.9 mV for CoP/CoS2/CC are required under alkaline, acidic, and neutral conditions, respectively. In particular, the as-prepared CoP/CoS2/CC shows markedly improved HER electroactivity in 1.0 M KOH, even outperforming commercial Pt-C/CC at a current density of >50 mA cm-2. In addition, the self-assembled CoP/CoS2||NiFe layered double hydroxide electrolyzer demonstrates efficient catalytic performance and long-time stability, excelling the benchmark Pt-C||IrO2. These findings indicate an effective pathway for the fabrication of high-performance heterogeneous electrocatalysts for hydrogen production in the future.

7.
Biotechnol J ; 18(10): e2300120, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37337619

RESUMEN

BACKGROUND: Biocatalysis in high-concentration organic solvents has been applied to produce various industrial products with many advantages. However, using enzymes in organic solvents often suffers from inactivation or decreased catalytic activity and stability. An R-selective ω-amine transaminase from Aspergillus terreus (AtATA) exhibited activity toward 1-acetylnaphthalene. However, AtATA displayed unsatisfactory organic solvent resistance, which is required to enhance the solubility of the hydrophobic substrate 1-acetylnaphthalene. So, improving the tolerance of enzymes in organic solvents is essential. MAIN METHODS AND RESULTS: The method of regional random mutation combined with combinatorial mutation was used to improve the resistance of AtATA in organic solvents. Enzyme surface areas are structural elements that undergo reversible conformational transitions, thus affecting the stability of the enzyme in organic solvents. Herein, three surface areas containing three loops were selected as potential mutation regions. And the "best" mutant T23I/T200K/P260S (M3) was acquired. In different concentrations of dimethyl sulfoxide (DMSO), the catalytic efficiency (kcat /Km ) toward 1-acetylnaphthalene and the stability (half-life t1/2 ) were higher than the wild-type (WT) of AtATA. The results of decreased Root Mean Square Fluctuation (RMSF) values via 20-ns molecular dynamics (MD) simulations under 15%, 25%, 35%, and 45% DMSO revealed that mutant M3 had lower flexibility, acquiring a more stable protein structure and contributing to its organic solvents stability than WT. Furthermore, M3 was applied to convert 1-acetylnaphthalene for synthesizing (R)-(+)-1(1-naphthyl)-ethylamine ((R)-NEA), which was an intermediate of Cinacalcet Hydrochloride for the treatment of secondary hyperthyroidism and hypercalcemia. Moreover, in a 20-mL scale-up experiment, 10 mM 1-acetylnaphthalene can be converted to (R)-NEA with 85.2% yield and a strict R-stereoselectivity (enantiomeric excess (e.e.) value >99.5%) within 10 h under 25% DMSO. CONCLUSION: The beneficial mutation sites were identified to tailor AtATA's organic solvents stability via regional random mutation. The "best" mutant T23I/T200K/P260S (M3) holds great potential application for the synthesis of (R)-NEA.

8.
World J Clin Cases ; 11(14): 3288-3294, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37274038

RESUMEN

BACKGROUND: Hereditary spastic paraplegia (HSP) is a group of neurogenetic diseases of the corticospinal tract, accompanied by distinct spasticity and weakness of the lower extremities. Mutations in the spastic paraplegia type 4 (SPG4) gene, encoding the spastin protein, are the major cause of the disease. This study reported a Chinese family with HSP caused by a novel mutation of the SPG4 gene. CASE SUMMARY: A 44-year-old male was admitted to our hospital for long-term right lower limb weakness, leg stiffness, and unstable walking. His symptoms gradually worsened, while no obvious muscle atrophy in the lower limbs was found. Neurological examinations revealed that the muscle strength of the lower limbs was normal, and knee reflex hyperreflexia and bilateral positive Babinski signs were detected. Members of his family also had the same symptoms. Using mutation analysis, a novel heterozygous duplication mutation, c.1053dupA, p. (Gln352Thrfs*15), was identified in the SPG4 gene in this family. CONCLUSION: A Chinese family with HSP had a novel mutation of the SPG4 gene, which is autosomal dominant and inherited as pure HSP. The age of onset, sex distribution, and clinical manifestations of all existing living patients in this family were analyzed. The findings may extend the current knowledge on the existing mutations in the SPG4 gene.

9.
Talanta ; 265: 124815, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37348355

RESUMEN

Cancer is one of the major diseases that seriously endanger the health of all mankind. Accurate diagnosis of early cancer is the most promising way to reduce cancer harm and improve patient survival. However, many developed fluorescent probes for cancer imaging only have the function of identifying one marker, which cannot meet the needs of accurate diagnosis. Here, a fluorescent nanoprobe (CPH@ZIF-90) utilizing ZIF-90 to encapsulate SO2-sensitive dye (CPH) is synthesized for the sequential detection of ATP and SO2. The nanoprobe first interacts with ATP to release CPH, thus increasing the fluorescence at 685 nm and realizing the near-infrared (NIR) fluorescence detection of ATP. Then, SO2 acts on the released CPH through nucleophilic addition, affecting the π-conjugated structure of CPH and resulting in enhanced fluorescence at 580 nm. CPH@ZIF-90 exhibits satisfactory sensitivity and selectivity for sequential detection of ATP and SO2. Excitedly, CPH@ZIF-90 can sequentially image the endogenous ATP and SO2 in cells, showing sensitive fluorescence changes in dual channels (red and green). Due to the NIR emission properties of CPH@ZIF-90 and its ability to enrich in tumor, it is applied to monitor ATP and SO2 in mice and distinguish normal mice from tumor mice. The ability of CPH@ZIF-90 to sequentially detect two cancer-related biomarkers makes it provide meaningful assistance in accurate early diagnosis of cancer.


Asunto(s)
Neoplasias , Dióxido de Azufre , Animales , Ratones , Adenosina Trifosfato , Colorantes Fluorescentes/química , Diagnóstico por Imagen , Neoplasias/diagnóstico por imagen
10.
Signal Transduct Target Ther ; 8(1): 201, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179402

RESUMEN

In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.


Asunto(s)
Antineoplásicos , Microbioma Gastrointestinal , Microbiota , Neoplasias , Humanos , Microbiota/fisiología , Neoplasias/genética , Neoplasias/terapia , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inmunoterapia
11.
Phytomedicine ; 114: 154785, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37002972

RESUMEN

BACKGROUND: Gallbladder cancer (GBC) is the most aggressively malignant tumor in the bile duct system. The prognosis for patients with GBC is extremely poor. Ponicidin is a diterpenoid compound extracted and purified from the traditional Chinese herb Rabdosia rubescens, and showed promising anti-cancer effects in a variety of tumors. However, Ponicidin has not been investigated in GBC. METHODS: CCK-8, colony formation assay and EdU-488 DNA synthesis assay were performed to investigate the effect of Ponicidin on GBC cells proliferation. Cell invasion and migration assays and wound-healing assay were used to explore the effect of Ponicidin on invasion and migration ability of GBC cells. mRNA-seq was adopted to explore the underlying mechanisms. Western blot and immunohistochemical staining were conducted to detect the protein level. CHIP assay and dual-luciferase assay were used to validate binding motif. Nude mouse model of GBC was used to assess the anti-tumor effect and safety of Ponicidin. RESULTS: Ponicidin inhibited the proliferation and cell invasion and migration of GBC cells in vitro. Moreover, Ponicidin exerted anti-tumor effects by down-regulating the expression of MAGEB2. Mechanically, Ponicidin upregulated the FOXO4 expression and promoted it to accumulate in nucleus to inhibit the transcript of MAGEB2. Furthermore, Ponicidin suppressed tumor growth in the nude mouse model of GBC with excellent safety. CONCLUSION: Ponicidin may be a promising agent for the treatment of GBC effectively and safely.


Asunto(s)
Diterpenos , Neoplasias de la Vesícula Biliar , Animales , Ratones , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/metabolismo , Neoplasias de la Vesícula Biliar/patología , Línea Celular Tumoral , Ratones Desnudos , Diterpenos/farmacología , Proliferación Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Proteínas de Ciclo Celular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Antígenos de Neoplasias , Proteínas de Neoplasias/metabolismo
12.
Front Genet ; 14: 1135887, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035726

RESUMEN

Background: The association of coronavirus disease 2019 (COVID-19) with myocardial injury is not well known. This study explored the association between them using the Mendelian randomization (MR) method. Method: We obtained summary data from genome-wide association studies (GWAS) on myocardial injury and COVID-19 from public databases. Then, as tool variables, we chose single nucleotide polymorphisms associated with susceptibility and COVID-19 severity to investigate the causal relationship of COVID-19 with myocardial injury using inverse-variance weighting (IVW) as the primary approach. Finally, the reliability of the results was evaluated by performing sensitivity analyses. Results: As revealed by the IVW analyses, the seriously hospitalized patients with COVID-19 had causality with myocardial injury, with an ß of 0.14 and 95% confidence interval (CI) of 0.03-0.25 (p = 0.01). The results showed that COVID-19 with severe respiratory symptoms positively affected myocardial injury (ß = 0.11, 95% CI = 0.03-0.19; p = 0.005). Conclusion: According to this study, severe respiratory symptoms and hospitalization due to COVID-19 may increase the risk of myocardial injury.

13.
J Hepatocell Carcinoma ; 10: 497-515, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37020465

RESUMEN

Background: The Proteasome (PSM) is a large multi-catalytic protease complex consisting of a 20S core particle and a 19S regulatory particle whose main function is to accept and degrade ubiquitinated substrates, are now considered as one of the potential regulators of tumor proliferation, and stemness maintenance. However, to date, studies on the relationship between PSM and hepatocellular carcinoma (HCC) are limited. Methods: This study used a bioinformatics approach combining validation experiments to investigate the biological mechanisms that may be related with PSM. A series of experiments in vivo and in vitro were performed to explore the function of the 26S proteasome non-ATPase regulatory subunit 13 (PSMD13) in HCC. Results: HCC patients can be divided into two clusters. Cluster 1 (C1) patients having a significantly worse prognosis than Cluster (C2). Two subtypes had significant differences in proliferation-related signaling. In particular, the frequency of TP53 mutation was significantly higher in C1 than in C2. In addition, PSM-associated genes were highly consistent with the expression of DNA repair-related signatures, suggesting a potential link between PSM and genomic instability. We also found that downregulation of PSMD13 expression significantly inhibited stemness of tumor cells and impaired the Epithelial mesenchymal transition (EMT) process. Finally, the correlation between the PSMD13 and Ki67 was found to be strong. Conclusion: PSM is a valid predictor of prognosis and therapeutic response in patients with HCC disease. Furthermore, PSMD13 may be a potential therapeutic target.

14.
World J Clin Cases ; 11(9): 2002-2008, 2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-36998962

RESUMEN

BACKGROUND: Ralstonia is a Gram-negative non-fermentative bacterium widespread in nature, and includes four species, Ralstonia pickettii, Ralstonia solanacearum, Ralstonia mannitolilytica, and Ralstonia insidiosa, which were proposed in 2003. Ralstonia is mainly found in the external water environment, including municipal and medical water purification systems. This bacterium has low toxicity and is a conditional pathogen. It has been reported in recent years that infections due to Ralstonia are increasing. Previous studies have shown that most cases of infection are caused by Ralstonia pickettii, a few by Ralstonia mannitolilytica, and infections caused by Ralstonia insidiosa are rare. CASE SUMMARY: A 2-year-old Chinese child suffered from intermittent fever and cough for 20 d and was admitted to hospital with bronchial pneumonia. Bronchoscopy and alveolar lavage fluid culture confirmed Ralstonia insidiosa pneumonia. The infection was well controlled after treatment with meropenem and azithromycin. CONCLUSION: Ralstonia infections are increasing, and we report a rare case of Ralstonia insidiosa infection in a child. Clinicians should be vigilant about Ralstonia infections.

15.
Kaohsiung J Med Sci ; 39(4): 354-363, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36919585

RESUMEN

Laryngeal cancer is a usual malignant tumor of the head and neck. The role and mechanism of deubiquitinase USP21 in laryngeal cancer are still unclear. We aimed to explore whether USP21 affected laryngeal cancer progress through deubiquitinating AURKA. USP21 and AURKA levels were evaluated by qRT-PCR and Western blot. Kaplan-Meier analysis was conducted by survival package. MTT was performed to detect cell proliferation. The wound healing assay was applied to evaluate cell migration. Transwell was used to measure cell invasion. Co-IP and GST-pull down determined the interaction between USP21 and AURKA. In addition, AURKA ubiquitination levels were analyzed. USP21 was signally elevated in laryngeal cancer tissues and cells. USP21 level in clinical stages III-IV was higher than that in clinical stages I-II, and high levels of USP21 were highly correlated with poor prognosis in laryngeal cancer. USP21 inhibition suppressed AMC-HN-8 and TU686 cell proliferation, migration and invasion. Co-IP and GST-pull down confirmed the interaction between USP21 and AURKA. Knockdown of USP21 markedly increased the ubiquitination level of AURKA, and USP21 restored AURKA activity through deubiquitination. In addition, overexpression of AURKA reversed the effects of USP21 knockdown on cell growth, migration, and invasion. USP21 stabilized AURKA through deubiquitination to promote laryngeal cancer progression.


Asunto(s)
Neoplasias Laríngeas , Humanos , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patología , Aurora Quinasa A/genética , Proliferación Celular/genética , Línea Celular Tumoral , Ubiquitinación , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
16.
Fitoterapia ; 164: 105378, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36511342

RESUMEN

19 compounds, including seven previously undescribed alkaloids ((-)-macleayin K (1), (+)-macleayin K (2), macleayin M (3), macleayin N (4), macleayin L (5), macleayin O (6), oxohydrastinine A (7), one new natural product (8), and 11 known compounds, were isolated from the fruit pods of Macleaya microcarpa. Their structures were defined based on NMR, HRESIMS, and electronic circular dichroism (ECD) data. A network pharmacology approach combined with molecular docking and in vitro validation was performed to determine the bioactivity, key targets of the 19 compounds against breast cancer (BC) and cervical cancer (CC). EGFR and PIK3CA could become potential therapeutic targets based a network pharmacology. Moreover, molecular docking suggested that the 19 compounds combined well with EGFR and PIK3CA, respectively. Their cytotoxicity of selected compounds was tested against the MCF-7 and HeLa cells, and the preliminary structure-activity relationship is discussed. Compounds 1 (IC50: 6.00 µM) and 2 (IC50: 6.82 µM) exhibited strong inhibitory activity against the HeLa cells and are worthy of further study.


Asunto(s)
Alcaloides , Antineoplásicos , Papaveraceae , Humanos , Frutas , Células HeLa , Simulación del Acoplamiento Molecular , Estructura Molecular , Papaveraceae/química , Receptores ErbB
17.
Pathol Int ; 73(3): 109-119, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36285444

RESUMEN

Laryngeal cancer (LC) is a rare and challenging clinical problem. Our aim was to investigate the mechanism of salt-like transcription factor 4 (SALL4) in LC. LC tissue and paracancerous tissue were collected. Relative mRNA or protein levels were measured by quantitative real-time polymerase chain reaction or Western blot. MTT, wound healing, and transwell assay were performed to evaluate cell proliferation, migration and invasion. The binding relationship between SALL4 and USP21 promoter was verified by dual-luciferase assay and ChIP. Co-IP and glutathione-S-transferase (GST)-pull down were performed to measure the protein interaction between USP21 and YY1. Additionally, YY1 ubiquitination level was analyzed. It was found that SALL4 mRNA and SALL4 protein levels were elevated in LC clinical tissues and various LC cells. Knockdown of SALL4 inhibited epithelial-mesenchymal transition (EMT) of LC cells. USP21 was transcriptionally activated by SALL4. Co-IP and GST-pull down confirmed USP21 interacted with YY1. USP21 protected YY1 from degradation through deubiquitination. Furthermore, overexpression of USP21 reversed the effect of knockdown of SALL4 on YY1 and EMT in LC cells. In general, SALL4 facilitated EMT of LC cells through modulating USP21/YY1 axis.


Asunto(s)
Neoplasias Laríngeas , Factores de Transcripción , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Laríngeas/genética , ARN Mensajero , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Ubiquitina Tiolesterasa/genética , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Yin-Yang
18.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-980763

RESUMEN

To explore the methods of the explicitation of implicit knowledge and the construction of knowledge graph on moxibustion in medical case records of ZHOU Mei-sheng's Jiusheng. The medical case records data of Jiusheng was collected, the frequency statistic was analyzed based on Python3.8.6, complex network analysis was performed using Gephi9.2 software, community analysis was performed by the ancient and modern medical case cloud platform V2.3.5, and analysis and verification of correlation graph and weight graph were proceed by Neo4j3.5.25 image database. The disease systems with frequency≥10 % were surgery, ophthalmology and otorhinolaryngology, locomotor, digestive and respiratory systems. The diseases under the disease system were mainly carbuncle, arthritis, lumbar disc herniation and headache. The commonly used moxibustion methods were fumigating moxibustion, blowing moxibustion, direct moxibustion and warming acupuncture. The core prescription of points obtained by complex network analysis included Yatong point, Zhiyang(GV 9), Sanyinjiao(SP 6), Dazhui(GV 14), Zusanli(ST 36), Lingtai(GV 10), Xinshu(BL 15), Zhijian point and Hegu(LI 4), which were basically consistent with high-frequency points. A total of 6 communities were obtained by community analysis, corresponding to different diseases. Through the analysis of correlation graph, 13 pairs of strong association rule points were obtained. The correlation between Zhiyang(GV 9)-Dazhui(GV 14) and Yatong point-Lingtai(GV 10) was the strongest. The acupoints with high correlation with Yatong point were Zhiyang(GV 9), Lingtai(GV 10), Dazhui(GV 14), Zusanli(ST 36) and Sanyinjiao(SP 6). In the weight graph of the high-frequency disease system, the relationship of the first weight of the surgery system disease was fumigating moxibustion-carbuncle-Yatong point, and the relationship of the first weight of the ophthalmology and otorhinolaryngology system disease was blowing moxibustion-laryngitis-Hegu (LI 4). The results of correlation graph and weight graph are consistent with the results of data mining, which can be used as an effective way to study the knowledge base of moxibustion diagnosis and treatment in the future.


Asunto(s)
Humanos , Moxibustión , Ántrax , Reconocimiento de Normas Patrones Automatizadas , Terapia por Acupuntura , Puntos de Acupuntura
19.
Chinese Journal of Pathology ; (12): 460-465, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-985701

RESUMEN

Objective: To investigate the clinicopathological changes of early gastric cancer, especially its background mucosa, after the eradication of Helicobacter pylori (H. pylori), and to investigate the causes of underdiagnosis in preoperative biopsy pathology. Methods: Ninety cases of early gastric cancer after H. pylori eradication and 120 cases of endoscopic submucosal dissection (ESD) specimens without H. pylori eradication and their corresponding biopsy specimens were collected from Beijing Friendship Hospital Affiliated to Capital Medical University during 2016-2021. The clinicopathological data of the patients were analyzed, and the histopathological characteristics and immunophenotypic results compared. Results: Compared with the early gastric cancer without H. pylori eradication history, the histopathological type of early gastric cancer after H. pylori eradication was differentiated adenocarcinoma, with staggered distribution of cancerous and non-cancerous epithelium in the tumor area. The morphologic characteristics of gastric mucosa in the background of early gastric cancer after H. pylori eradication, were distinctive, including widening of the opening of enterosylated glandular ducts, serrated change of luminal margin, eosinophilic and microvesicular cytoplasm of enterosylated epithelium. Low-grade atypia existed in gastric cancer epithelial cells after sterilization, which might lead to underdiagnosis or missed diagnosis in biopsy pathology. Conclusions: Early gastric cancer and its background mucosa after H. pylori eradication have unique morphological characteristics, which can be used as a clue for pathological diagnosis, improve the accuracy of biopsy pathology and reduce the underdiagnosis.


Asunto(s)
Humanos , Helicobacter pylori , Infecciones por Helicobacter/tratamiento farmacológico , Neoplasias Gástricas/patología , Mucosa Gástrica/patología , Biopsia
20.
Proc Natl Acad Sci U S A ; 119(51): e2211193119, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36520670

RESUMEN

An interplay of geometrical frustration and strong quantum fluctuations in a spin-1/2 triangular-lattice antiferromagnet (TAF) can lead to exotic quantum states. Here, we report the neutron-scattering, magnetization, specific heat, and magnetocaloric studies of the recently discovered spin-1/2 TAF Na2BaCo(PO4)2, which can be described by a spin-1/2 easy axis XXZ model. The zero-field neutron diffraction experiment reveals an incommensurate antiferromagnetic ground state with a significantly reduced ordered moment of about 0.54(2) µB/Co. Different magnetic phase diagrams with magnetic fields in the ab plane and along the easy c-axis were extracted based on the magnetic susceptibility, specific heat, and elastic neutron-scattering results. In addition, two-dimensional (2D) spin dispersion in the triangular plane was observed in the high-field polarized state, and microscopic exchange parameters of the spin Hamiltonian have been determined through the linear spin wave theory. Consistently, quantum critical behaviors with the universality class of d = 2 and νz = 1 were established in the vicinity of the saturation field, where a Bose-Einstein condensation (BEC) of diluted magnons occurs. The newly discovered quantum criticality and fractional magnetization phase in this ideal spin-1/2 TAF present exciting opportunities for exploring exotic quantum phenomena.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...